Statistical Analysis in Political Science

(Online, Asynchronous)

GOV 350K Unique # 38094 Spring 2023

Instructor Philip Moniz

Email: pmoniz@utexas.edu
Office hours: Tu, Th 1pm-230pm

All office hours will be held over Zoom (find links in "Calendar" tab in Canvas).

Today, data are available on almost any topic. In a now-classic quote, E.O. Wilson said "We are drowning in information, while starving for wisdom. The world henceforth will be run by synthesizers, people able to put together the right information at the right time, think critically about it, and make important choices wisely."

This course will teach students the skills needed to unlock valuable and important knowledge from data. The class will be taught online, but extensive inperson help will be available to students through online office hours and optional help sessions which will be conducted via video conference.

Students will learn how to obtain data, how to manipulate it into a useful format, how to analyze it to produce insights, and how to present these findings effectively. These skills will be useful in future coursework as well as in a wide range of professional contexts. In other words, the skills you will learn in this class are highly valuable!

This course will teach students how to examine data to uncover patterns, how to estimate simple statistical models to understand relationships between variables, how to build predictive models, and how to learn about cause and effect. There are no mathematical prerequisites for the course and we will not use much beyond basic arithmetic. The main requirement is a willingness to think carefully. For data analysis, we will use the R statistical programming environment. R is open source and freely available. It is commonly used in academia, business, and other contexts, and includes tools for simple analyses as well as more advanced methods. Many employers view basic statistical knowledge and the ability to use R as great assets when making hiring decisions.

Although this is not a math class *per se*, it will be somewhat mathematical. There are no prerequisites beyond basic middle and high school math, but students will have to use mathematical reasoning to understand the course's concepts. Students should not worry that they are not a "math person." If you know +, -, \times , and \div , you just need to be willing to learn the rest.

Textbook

The main (required) text for the class is:

• *OpenIntro Statistics (4th Edition)*, by David Diez, Mine Cetinkaya-Rundel and Christopher Barr.

This book is available as a free pdf here: https://www.openintro.org/book/os/ If you'd like a hard copy, you can order one through Amazon for around \$20 (see the same link above). To download the book for free, you will have to "Add Ebook to Cart" and "Check Out" but you can choose how much you pay (i.e. you can pay nothing if you want). There is a standard pdf version and a "Tablet-Friendly PDF", which is basically a pdf with very small margins that looks better on a tablet (and maybe on a computer too depending on your preferences). Students sometimes find it helpful to have multiple sources for material. Below, I list several optional texts. Students should feel free to consult these for slightly different perspectives on the ideas we cover. I will also assign other readings, which will be posted on Canvas. Any assigned readings will be announced to students in advance.

Optional texts for students who want multiple references:

- The Cartoon Guide to Statistics, by Larry Gonick and Woollcott Smith
 - This is a somewhat silly perspective on the basic concepts in probability and statistics. As the name suggests, it's full of cartoons. But the explanations of many of the ideas are actually very clear and useful. I have heard that pdfs of this book can be found online. Any version should be fine – don't need to worry if it's the latest one.
- Data Science: A Gentle Introduction, by James Scott.
 - Nicely written and thoughtful overview of basic probability and statistics, written by a UT professor. Available as free pdf here: https://jgscott.github.io/STA371H Spring2018/files/DataScience.pdf

- Using R for Introductory Statistics, by John Verzani
 - Available as free pdf here: https://cran.r-project.org/doc/contrib/Verzani-SimpleR.pdf A good combination of basic intro R and intro statistics. Note: this book uses "=" as the assignment operator instead of "<-" that we will use in the class so you'll have to adjust when looking at the code (not that it makes a difference which one you use).
- An Introduction to R.
 - Basic but fairly comprehensive introduction to R. Available as free pdf here: https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf
 It's pretty dry and reads more like an instruction manual than a textbook, but that makes it good for reference.
- A Modern Dive into R and the tidyverse, by Albert Kim and Kelly McConville.
 - Free online (see https://moderndive.com/index.html). Good introduction to R and RStudio, but relies heavily on some fancier R packages that we won't cover directly (the so-called "tidyverse"), so much of the R code will look different from what we use.
- *R for Data Science*, by Hadley Wickham and Garrett Grolemund.
 - Free online (see https://r4ds.had.co.nz) book that provides a great introduction to modern R for statistics. We may assign some parts of this book on general R and best practices. But it relies heavily on some fancier R packages that we won't cover directly (the so-called "tidyverse"), so much of the R code will look different from what we use.

Other than these books, you will often find answers by searching online (Google an error message you received or search for "histograms in R"). Or you can search for your question on http://stackoverflow.com where it's likely someone has already asked something similar. Obviously, the instructor is here to help as well. I would suggest that you try to figure out things on your own at first. Searching for solutions to error messages isn't the most exciting thing to do, but it's a skill that will serve you well later on, so while you should always feel free to ask us any questions you have, there's a benefit to attempting to figure these things on your own for a bit. When you're really stuck, though, let us know.

Class Structure

This course will consist of two-week "modules" of material, which will include recorded video lecture segments, software walkthroughs and reading assignments. Each module will be posted on a Friday and quizzes (to be taken after doing reading and watching lecture segments) for a given module must be taken by the second Monday at 11pm. Each module will also have a problem set, which will be due Wednesday after the quiz at 11pm, and an R checkup quiz and computing assignment (a "lab"), which will be due Friday by 11pm.

Quizzes

Students will complete online quizzes after doing readings and viewing prerecorded lecture videos. These quizzes will give students an opportunity to assess their understanding of the material.

Quizzes must be taken by 11pm on the second Monday of a module. After this time, the quizzes will be closed and students will receive a grade of zero for any quizzes they did not complete. We will drop the lowest 2 quiz grades for each student.

Students may use notes or other materials during the quizzes but should work alone. Students must work entirely by themselves on the quizzes – collaboration is NOT allowed on quizzes.

Problem Sets

Problem sets will be posted at the start of each section of material and will be due on the second Thursday by 11pm, turned in through Canvas. Students can work together in small groups on problem sets, but I trust that you all know the difference between helping each other figure something out and copying. Sharing answers in online forums, in large groups, or in shared documents is <u>not</u> allowed.

Computing Assignments (AKA "Labs")

We will be using the R statistical package, which can be downloaded for free at http://www.r-project.org. It is recommended that you run R through a program called RStudio, which is also free to download. We will provide instructions for installing and using both of these programs.

Each module we will have a computing assignment, which we will call "labs", which will be due on the second Friday by 11pm, turned in through Canvas. Students should write their responses in R Markdown (through RStudio) and will turn in "knitted" HTML files with their lab writeups. We will provide instructions for students on using R Markdown, but you can also find a simple introduction here: https://rmarkdown.rstudio.com/lesson-1.html (we will only use the most basic functionality of R Markdown in this course)

Students can work together in small groups on lab assignments, but I trust that you all know the difference between helping each other something figure out and copying. All keystrokes must be your own, not copied and pasted from another

student's assignment. In other words, you can talk with a (small) group of other students about how to do these assignments, but you must actually do them on your own – no pasting in someone else's code. Sharing answers online or in large groups or shared documents is **not** allowed.

R Checkups

R Checkups will be posted at the start of each module and will be due on the last Friday at 11pm. The R Checkups should be completed before students begin working on the lab, as the checkup is an opportunity to reinforce and fill in gaps in your understanding of R. These checkups are open-book, just like the quizzes. You are encouraged to work through the questions in R yourself before submitting your answers.

The R Checkups are part of your Quiz grade (20% of total grade). They are also part of the drop-two-lowest-grades rule. So if one of your lowest Quiz grades is an R Checkup, then the R Checkup grade will be dropped.

Semester Project

Each student will work on a semester long project in which they pose their own research question, then gather and analyze data in order to learn about the answer. The paper will have several intermediate assignments that are designed to help students.

Dates for project assignments (all to be submitted through Canvas):

Choose a Research Question (due by Th 2/23 at 11pm)
Gather Data (due by Tu 3/30 at 11pm)
Final Paper (due by Tu 4/26 at 11pm)

The semester project grade will be a combination of the three above project assignments, weighted 10%, 20%, and 70%, respectively.

Late Assignments

Late computing assignments and problem sets will be penalized by 10 points for each day late (so 10 points off if it's 1 minute late, 20 points off if it's 24 hours and one minute late, etc.). Assignments will not be accepted once the answer key has been posted, which is typically within a few days of the due date.

Grading

Course grades will be based on the following percentages:

Quizzes and R Checkups: 20% Computing Assignments: 25% Problem Sets: 25% Project: 30%

The following grade cutoffs will be used to calculate final course grades:

93-100 A 77-79 C+

90-92	A-	73-76	С
87-89	B+	70-72	C-
83-86	В	60-69	D
80-82	B-	Below 60	F

I will round up half points (e.g. 92.5 = A, but 92.49 = A-).

Academic Honesty and Integrity

Issues of academic dishonesty will be taken very seriously and any finding of cheating or other unethical behavior will be pursued to the full extent possible under university policy. Students should consult the University of Texas Honor Code.

There will be no deadline extensions without <u>prior</u> written consent from the instructor. These special accommodations will be granted only for valid medical or other serious reasons, defined at the instructor's discretion. Students who miss exams and provide an excuse afterwards will not be granted a makeup and may be given zero percent on the exam in question.

If you have a potential issue, let the instructor know as soon as you can. I will do our best to work with you. But it's much more likely I'll be able to find an option that's satisfactory for everyone if I know earlier, rather than if I hear after you've already missed a deadline or fallen way behind in the class. In other words: *I'm here to help, but you'll have to let me know if you need help*.

Special Needs

Students with disabilities may request appropriate academic accommodations from the Division of Diversity and Community Engagement, Services for Students with Disabilities, 471-6259, https://diversity.utexas.edu/disability/

All students needing special accommodations should email the instructor as soon as possible at the start of the semester so that we can work out accommodations to help you succeed.

Quantitative Reasoning Flag

This course carries the Quantitative Reasoning flag. Quantitative Reasoning courses are designed to equip you with skills that are necessary for understanding the types of quantitative arguments you will regularly encounter in your adult and professional life. You should therefore expect a substantial portion of your grade to come from your use of quantitative skills to analyze real-world problems.

Technical Support

If you experience a technical problem that is not related to course content, but instead is specific to your computer or Canvas itself, click on the "Online Course Tech Support" item in the left-side navigation bar. The Online Course Tech Support chatbot, called "LAITS Bot", will assist with technical problems and can escalate your question to a human if it cannot readily answer your question.

Technical Requirements for Online Instruction

All students are required to have access to a **laptop** or **desktop computer**, running either *Windows* or *macOS* operating systems. (Tablets, smartphones, and Microsoft Surface devices are not supported.) Your computer should meet the following requirements:

- Modern and up-to-date operating system (macOS or Windows)
- Browser: Chrome (highly recommended), Safari or Firefox (If using Safari or Firefox, be prepared to <u>download Chrome</u> and use it.)
- 5 Mbps internet connection speed (<u>check your speed here</u>)
- Functional webcam and microphone
- Zoom installed and configured

Confirm that your computer is able to stream video by visiting https://www.laits.utexas.edu/tower/tech.php